36 research outputs found

    Adinkras and Arithmetical Graphs

    Get PDF
    Adinkras and arithmetical graphs have divergent origins. In the spirit of Feynman diagrams, adinkras encode representations of supersymmetry algebras as graphs with additional structures. Arithmetical graphs, on the other hand, arise in algebraic geometry, and give an arithmetical structure to a graph. In this thesis, we will interpret adinkras as arithmetical graphs and see what can be learned. Our work consists of three main strands. First, we investigate arithmetical structures on the underlying graph of an adinkra in the specific case where the underlying graph is a hypercube. We classify all such arithmetical structures and compute some of the corresponding volumes and linear ranks. Second, we consider the case of a reduced arithmetical graph structure on the hypercube and explore the wealth of relationships that exist between its linear rank and several notions of genus that appear in the literature on graph theory and adinkras. Third, we study modifications of the definition of an arithmetical graph that incorporate some of the properties of an adinkra, such as the vertex height assignment or the edge dashing. To this end, we introduce the directed arithmetical graph and the dashed arithmetical graph. We then explore properties of these modifications in an attempt to see if our definitions make sense, answering questions such as whether the volume is still an integer and whether there are still only finitely many arithmetical structures on a given graph

    The bottleneck degree of algebraic varieties

    Full text link
    A bottleneck of a smooth algebraic variety X⊂CnX \subset \mathbb{C}^n is a pair of distinct points (x,y)∈X(x,y) \in X such that the Euclidean normal spaces at xx and yy contain the line spanned by xx and yy. The narrowness of bottlenecks is a fundamental complexity measure in the algebraic geometry of data. In this paper we study the number of bottlenecks of affine and projective varieties, which we call the bottleneck degree. The bottleneck degree is a measure of the complexity of computing all bottlenecks of an algebraic variety, using for example numerical homotopy methods. We show that the bottleneck degree is a function of classical invariants such as Chern classes and polar classes. We give the formula explicitly in low dimension and provide an algorithm to compute it in the general case.Comment: Major revision. New introduction. Added some new illustrative lemmas and figures. Added pseudocode for the algorithm to compute bottleneck degree. Fixed some typo

    Learning Algebraic Varieties from Samples

    Full text link
    We seek to determine a real algebraic variety from a fixed finite subset of points. Existing methods are studied and new methods are developed. Our focus lies on aspects of topology and algebraic geometry, such as dimension and defining polynomials. All algorithms are tested on a range of datasets and made available in a Julia package

    Voronoi Cells in Metric Algebraic Geometry of Plane Curves

    Full text link
    Voronoi cells of varieties encode many features of their metric geometry. We prove that each Voronoi or Delaunay cell of a plane curve appears as the limit of a sequence of cells obtained from point samples of the curve. We use this result to study metric features of plane curves, including the medial axis, curvature, evolute, bottlenecks, and reach. In each case, we provide algebraic equations defining the object and, where possible, give formulas for the degrees of these algebraic varieties. We show how to identify the desired metric feature from Voronoi or Delaunay cells, and therefore how to approximate it by a finite point sample from the variety.Comment: 23 pages, 14 figure

    Critical Curvature of Algebraic Surfaces in Three-Space

    Full text link
    We study the curvature of a smooth algebraic surface X⊂R3X\subset \mathbb R^3 of degree dd from the point of view of algebraic geometry. More precisely, we consider umbilical points and points of critical curvature. We prove that the number of complex critical curvature points is of order d3d^3. For general quadrics, we fully characterize the number of real and complex umbilics and critical curvature points

    Ramsey Theory Problems over the Integers: Avoiding Generalized Progressions

    Full text link
    Two well studied Ramsey-theoretic problems consider subsets of the natural numbers which either contain no three elements in arithmetic progression, or in geometric progression. We study generalizations of this problem, by varying the kinds of progressions to be avoided and the metrics used to evaluate the density of the resulting subsets. One can view a 3-term arithmetic progression as a sequence x,fn(x),fn(fn(x))x, f_n(x), f_n(f_n(x)), where fn(x)=x+nf_n(x) = x + n, nn a nonzero integer. Thus avoiding three-term arithmetic progressions is equivalent to containing no three elements of the form x,fn(x),fn(fn(x))x, f_n(x), f_n(f_n(x)) with fn∈Ftf_n \in\mathcal{F}_{\rm t}, the set of integer translations. One can similarly construct related progressions using different families of functions. We investigate several such families, including geometric progressions (fn(x)=nxf_n(x) = nx with n>1n > 1 a natural number) and exponential progressions (fn(x)=xnf_n(x) = x^n). Progression-free sets are often constructed "greedily," including every number so long as it is not in progression with any of the previous elements. Rankin characterized the greedy geometric-progression-free set in terms of the greedy arithmetic set. We characterize the greedy exponential set and prove that it has asymptotic density 1, and then discuss how the optimality of the greedy set depends on the family of functions used to define progressions. Traditionally, the size of a progression-free set is measured using the (upper) asymptotic density, however we consider several different notions of density, including the uniform and exponential densities.Comment: Version 1.0, 13 page
    corecore